Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone. In the process of building BLOOM--the Big Science Large Open-science Open-access Multilingual language model--our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget. Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization. In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience .
translated by 谷歌翻译
人类视野的一个基本组成部分是我们解析复杂的视觉场景并判断其组成物体之间的关系的能力。近年来,随着最先进的系统在其中一些基准上达到人类的准确性,近年来,视觉推理的AI基准驱动了快速进步。然而,就样本效率而言,人类和AI系统学习新的视觉推理任务的样本效率仍然存在。人类在学习方面的非凡效率至少部分归因于其利用组成性的能力,以便他们可以在学习新任务时有效利用先前获得的知识。在这里,我们介绍了一种新颖的视觉推理基准组成视觉关系(CVR),以推动发展更多数据有效学习算法的进步。我们从流体智能和非语言推理测试中汲取灵感,并描述一种新的方法,用于创建抽象规则和相关图像数据集的组成。我们提出的基准包括跨任务规则的样本效率,概括和转移的度量,以及利用组合性的能力。我们系统地评估现代神经体系结构,发现令人惊讶的是,在大多数数据制度中,卷积架构在所有性能指标中都超过了基于变压器的体系结构。但是,即使在使用自学意见书学习信息性的视觉表示之后,与人类相比,所有计算模型的数据效率要少得多。总体而言,我们希望我们的挑战能够激发人们对可以学会利用构图朝着更高效学习的神经体系结构发展的兴趣。
translated by 谷歌翻译
当今最先进的机器学习型号几乎无法审查。解释性方法的主要挑战是通过揭示导致给定决定的策略,通过表征其内部状态或研究基础数据表示来帮助研究人员开放这些黑匣子。为了应对这一挑战,我们开发了Xplique:一种用于解释性的软件库,其中包括代表性的解释性方法以及相关的评估指标。它与最受欢迎的学习库之一接口:Tensorflow以及其他图书馆,包括Pytorch,Scikit-Learn和Theano。该代码是根据MIT许可证获得许可的,可在Github.com/deel-ai/xplique上免费获得。
translated by 谷歌翻译
已经提出了多种解释性方法和理论评价分数。然而,尚不清楚:(1)这些方法有多有用的现实情景和(2)理论措施如何预测人类实际使用方法的有用性。为了填补这一差距,我们在规模中进行了人类的心理物理学实验,以评估人类参与者(n = 1,150)以利用代表性归因方法学习预测不同图像分类器的决定的能力。我们的结果表明,用于得分的理论措施可解释方法的反映在现实世界方案中的个人归因方法的实际实用性不佳。此外,个人归因方法帮助人类参与者预测分类器的决策的程度在分类任务和数据集中广泛变化。总体而言,我们的结果突出了该领域的根本挑战 - 建议致力于开发更好的解释方法和部署人以人为本的评估方法。我们将制定框架的代码可用于缓解新颖解释性方法的系统评估。
translated by 谷歌翻译
With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.
translated by 谷歌翻译
In this paper, we address the problem of multimodal emotion recognition from multiple physiological signals. We demonstrate that a Transformer-based approach is suitable for this task. In addition, we present how such models may be pretrained in a multimodal scenario to improve emotion recognition performances. We evaluate the benefits of using multimodal inputs and pre-training with our approach on a state-ofthe-art dataset.
translated by 谷歌翻译
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks.
translated by 谷歌翻译
Automotive radar sensors provide valuable information for advanced driving assistance systems (ADAS). Radars can reliably estimate the distance to an object and the relative velocity, regardless of weather and light conditions. However, radar sensors suffer from low resolution and huge intra-class variations in the shape of objects. Exploiting the time information (e.g., multiple frames) has been shown to help to capture better the dynamics of objects and, therefore, the variation in the shape of objects. Most temporal radar object detectors use 3D convolutions to learn spatial and temporal information. However, these methods are often non-causal and unsuitable for real-time applications. This work presents RECORD, a new recurrent CNN architecture for online radar object detection. We propose an end-to-end trainable architecture mixing convolutions and ConvLSTMs to learn spatio-temporal dependencies between successive frames. Our model is causal and requires only the past information encoded in the memory of the ConvLSTMs to detect objects. Our experiments show such a method's relevance for detecting objects in different radar representations (range-Doppler, range-angle) and outperform state-of-the-art models on the ROD2021 and CARRADA datasets while being less computationally expensive. The code will be available soon.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译